Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

نویسندگان

  • Martin Fink
  • Sergey Pupyrev
چکیده

Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard. Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an O( √ log |L|)-approximation algorithm for MLCM-P.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Algorithm for the Metro-line Crossing Minimization Problem

In the metro-line crossing minimization problem, we are given a plane graph G = (V,E) and a set L of simple paths (or lines) that cover G, that is, every edge e ∈ E belongs to at least one path in L. The problem is to draw all paths in L along the edges of G such that the number of crossings between paths is minimized. This crossing minimization problem arises, for example, when drawing metro m...

متن کامل

On Metro-Line Crossing Minimization

We consider the problem of drawing a set of simple paths along the edges of an embedded underlying graph G = (V,E) so that the total number of crossings among pairs of paths is minimized. This problem arises when drawing metro maps, where the embedding of G depicts the structure of the underlying network, the nodes of G correspond to train stations, an edge connecting two nodes implies that the...

متن کامل

Line Crossing Minimization on Metro Maps

We consider the problem of drawing a set of simple paths along the edges of an embedded underlying graph G = (V, E), so that the total number of crossings among pairs of paths is minimized. This problem arises when drawing metro maps, where the embedding of G depicts the structure of the underlying network, the nodes of G correspond to train stations, an edge connecting two nodes implies that t...

متن کامل

Exact and fixed-parameter algorithms for metro-line crossing minimization problems

A metro-line crossing minimization problem is to draw multiple lines on an underlying graph that models stations and rail tracks so that the number of crossings of lines becomes minimum. It has several variations by adding restrictions on how lines are drawn. Among those, there is one with a restriction that line terminals have to be drawn at a verge of a station, and it is known to be NP-hard ...

متن کامل

On the complexity of crossings in permutations

We investigate crossing minimization problems for a set of permutations, where a crossing expresses a disarrangement between elements. The goal is a common permutation π∗ which minimizes the number of crossings. In voting and social science theory this is known as the Kemeny optimal aggregation problem minimizing the Kendall-τ distance. This rank aggregation problem can be phrased as a one-side...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013